SoatDev IT Consulting
SoatDev IT Consulting
  • About us
  • Expertise
  • Services
  • How it works
  • Contact Us
  • News
  • November 8, 2023
  • Rss Fetcher

Differential privacy can be rigid and overly conservative in practice, and so finding ways to relax pure differential privacy while retaining its benefits is an active area of research. Two approaches to doing this are concentrated differential privacy [1] and Rényi differential privacy [3].

Differential privacy quantifies the potential impact of an individual’s participation or lack of participation in a database and seeks to bound the difference. The original proposal for differential privacy and the approaches discussed here differ in how they measure the difference an individual can make. Both concentrated differential privacy (CDP) and Rényi differential privacy (RDP) use Rényi divergence, though they use it in different ways.

In [3], Mirinov discusses the similarities and differences regarding CDP and RDP. (I changed Mirnov’s reference numbers to the reference numbers used here.)

The closely related work by Dwork and Rothblum [1], followed by Bun and Steinke [2], explore privacy definitions—Concentrated Differential Privacy and zero-Concentrated Differential Privacy—that are framed using the language of, respectively, subgaussian tails and the Rényi divergence. The main difference between our approaches is that both Concentrated and zero-Concentrated DP require a linear bound on all positive moments of a privacy loss variable. In contrast, our definition applies to one moment at a time. Although less restrictive, it allows for more accurate numerical analyses.

(α, ε)-RDP fixes values of α and ε and requires that the Rényi divergence of order α between a randomized mechanism M applied to two adjacent databases, databases that differ by the data on one individual, is bounded by ε.

D_alpha(M(x) || M(x')) leq varepsilon

Zero-concentrated differential privacy (zCDP) with parameters ε and ρ requires that the Rényi divergence is bounded by ε + ρα for all α in (1, ∞).

D_alpha(M(x) || M(x')) leq varepsilon + rhoalpha

The pros and cons of zCDP and RDP are complicated. For more details, see the references below.

Related posts

  • Composition theorems for differential privacy
  • Comparing differential privacy to truncation
  • Data privacy consulting

[1] Cynthia Dwork and Guy Rothblum. Concentrated differential privacy. CoRR, abs/1603.01887, 2016.

[2] Mark Bun, Thomas Steinke. Concentrated Differential Privacy: Simplifications, Extensions, and Lower Bounds. arXiv:1605.02065 [cs.CR], 2017

[3] Ilya Mironov. Renyi Differential Privacy. arXiv:1702.07476 [cs.CR]

The post Zero-Concentrated Differential Privacy first appeared on John D. Cook.

Previous Post
Next Post

Recent Posts

  • Questions about Gemini, Claude, and ChatGPT? Prompt engineering is the answer
  • How is Technology Modernizing Recruitment in Temporary Employment Services
  • Banking on a serverless world
  • Court denies Apple’s request to pause ruling on App Store payment fees
  • Cursor’s Anysphere nabs $9.9B valuation, soars past $500M ARR

Categories

  • Industry News
  • Programming
  • RSS Fetched Articles
  • Uncategorized

Archives

  • June 2025
  • May 2025
  • April 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023

Tap into the power of Microservices, MVC Architecture, Cloud, Containers, UML, and Scrum methodologies to bolster your project planning, execution, and application development processes.

Solutions

  • IT Consultation
  • Agile Transformation
  • Software Development
  • DevOps & CI/CD

Regions Covered

  • Montreal
  • New York
  • Paris
  • Mauritius
  • Abidjan
  • Dakar

Subscribe to Newsletter

Join our monthly newsletter subscribers to get the latest news and insights.

© Copyright 2023. All Rights Reserved by Soatdev IT Consulting Inc.