SoatDev IT Consulting
SoatDev IT Consulting
  • About us
  • Expertise
  • Services
  • How it works
  • Contact Us
  • News
  • August 16, 2023
  • Rss Fetcher

Let A be an n × n complex matrix. The numerical range of A is the image of x*Ax over the unit sphere. That is, the numerical range of A is the set W(A) in defined by

W(A) = {x*Ax | x ∈ ℂn and ||x|| = 1}

where x* is the conjugate transpose of the column vector x.

The product of a row vector and a column vector is a scalar, so W(A) is a subset of the complex plane ℂ.

When A is a 2 × 2 matrix, W(A) is an ellipse, and the two foci are the eigenvalues of A.

Denote the two eigenvalues by λ1 and λ2 . Denote the major and minor axes of the ellipse by a and b respectively. Then

b² = tr(A*A) − |λ1|² − |λ2|².

where tr is the trace operator. This is the elliptical range theorem [1]. The theorem doesn’t state the major axis a explicitly, but it can be found from the two foci and the minor axis b.

Demonstration

We will create a visualization the numerical range of a matrix directly from the definition, generating x‘s at random and plotting x*Ax. Then we draw the ellipse described in the elliptical range theorem and see that it forms the boundary of the random points.

The following code plots 500 random points in the numerical range of a matrix formed from the numbers in today’s date. The eigenvalues are plotted in black.

import numpy as np
from scipy.stats import norm
import matplotlib.pyplot as plt

A = np.array([[8, 16], [20, 23j]])

for _ in range(5000):
    v = norm(0, 1).rvs(size=4)
    v /= np.linalg.norm(v)
    x = np.array([v[0] + 1j*v[1], v[2] + 1j*v[3]])
    z = np.conj(x).dot(A.dot(x))
    plt.plot(z.real, z.imag, 'o', color='0.9')

eigenvalues, eigenvectors = np.linalg.eig(A)    
plt.plot(eigenvalues[0].real, eigenvalues[0].imag, 'ko')
plt.plot(eigenvalues[1].real, eigenvalues[1].imag, 'ko')

The following code draws the ellipse guaranteed by the elliptical range theorem.

A_star_A = np.dot(np.conj(A).T, A)
b = (np.trace(A_star_A) - abs(eigenvalues[0])**2 - abs(eigenvalues[1])**2)**0.5
c = 0.5*abs(eigenvalues[0] - eigenvalues[1])
a = (2/3)*(2*(2*b**2/4 + c**2)**0.5 + c)

t = np.linspace(0, np.pi*2)
z = a*np.cos(t)/2 + 1j*b*np.sin(t)/2
u = (eigenvalues[1] - eigenvalues[0])/2
u /= np.linalg.norm(u)
m = eigenvalues.mean()
z = z*u + m

plt.plot(z.real, z.imag, 'b-')

Here is the result.

Here is the result of running the same code with 10,000 random points.

Related posts

  • Posts on ellipses and elliptic integrals
  • Marden’s amazing theorem

[1] Ulrich Daepp, Pamela Gorkin, Andrew Shaffer, and Karl Voss. Finding Ellipses: What Blaschke Products, Poncelet’s Theorem, and the Numerical Range Know about Each Other. MAA Press 2018.

The post The numerical range ellipse first appeared on John D. Cook.

Previous Post
Next Post

Recent Posts

  • Lawyers could face ‘severe’ penalties for fake AI-generated citations, UK court warns
  • At the Bitcoin Conference, the Republicans were for sale
  • Week in Review: Why Anthropic cut access to Windsurf
  • Will Musk vs. Trump affect xAI’s $5 billion debt deal?
  • Superblocks CEO: How to find a unicorn idea by studying AI system prompts

Categories

  • Industry News
  • Programming
  • RSS Fetched Articles
  • Uncategorized

Archives

  • June 2025
  • May 2025
  • April 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023

Tap into the power of Microservices, MVC Architecture, Cloud, Containers, UML, and Scrum methodologies to bolster your project planning, execution, and application development processes.

Solutions

  • IT Consultation
  • Agile Transformation
  • Software Development
  • DevOps & CI/CD

Regions Covered

  • Montreal
  • New York
  • Paris
  • Mauritius
  • Abidjan
  • Dakar

Subscribe to Newsletter

Join our monthly newsletter subscribers to get the latest news and insights.

© Copyright 2023. All Rights Reserved by Soatdev IT Consulting Inc.