SoatDev IT Consulting
SoatDev IT Consulting
  • About us
  • Expertise
  • Services
  • How it works
  • Contact Us
  • News
  • November 28, 2023
  • Rss Fetcher

The numbers in today’s date—11, 28, and 23—make up the sides of a triangle. This doesn’t always happen; the two smaller numbers have to add up to more than the larger number.

We’ll look at triangles with sides 11, 23, and 28 in the plane, on a sphere, and on a hypersphere. Most of the post will be devoted to the middle case, a large triangle on the surface of the earth.

Solving a triangle in the plane

If we draw a triangle with sides 11, 23, and 28, we can find out the angles of the triangle using the law of cosines:

c² = a² + b² – 2ab cos C

where C is the angle opposite the side c. We can find each of the angles of the triangle by rotating which side we call c.

If we let c = 11, then C = arccos((23² + 28² − 11²)/(2 × 23 × 28)) = 22.26°.

If we let c = 23, then C = arccos((11² + 28² − 23²)/(2 × 11 × 28)) = 52.38°.

If we let c = 28, then C = arccos((11² + 23² − 28²)/(2 × 11 × 23)) = 105.36°.

Solving a triangle on a sphere

Now suppose we make our 11-23-28 triangle very large, drawing our triangle on the face of the earth. We pick our unit of measurement to be 100 miles, and we get a triangle very roughly the size and shape of Argentina.

We can still use the law of cosines, but it takes a different form, and the meaning of the terms changes. The law of cosines on a sphere is

cos(c) = cos(a) cos(b) + sin(a) sin(b) cos(C).

As before, a, b, and c are sides of the triangle, and the sides b and c intersect at an angle C. However, now the sides themselves are angles because they are arcs on a sphere. Now a, b, and c are measured in degrees or radians, not in miles.

If the length of an arc is x, the angular measure of the arc is 2πx/R where R is the radius of the sphere. The mean radius of the earth is 3959 miles, and we’ll assume the earth is a sphere with that radius.

We can solve for the angle opposite the longest side by using

C = arccos( (cos(c) – cos(a) cos(b)) / sin(a) sin(b) )

where

a = 2π × 1100 / 3959
b = 2π × 2300 / 3959
c = 2π × 2800 / 3959

It turns out that C = 149.8160°, and the other angles are 14.3977° and 29.4896°.

Importantly, the sum of these three angles is more than 180°. In fact it’s 193.7033°.

The sum of the vertex angles in a spherical triangle is always more than 180°, and the bigger the triangle, the more the sum exceeds 180°. The amount by which the sum exceeds 180° is called the spherical excess E and it is proportional to the area. In radians,

E = area / R².

In our example the excess is 13.7033° and so the area of our triangle is

13.7033° × (π radians / 180°) × 3959² miles² = 3,749,000 miles².

Now Argentina has an area of about a million square miles, so our triangle is bigger than Argentina, but smaller than South America (6.8 million square miles). Argentina is about 2300 miles from north to south, so one of the sides of our triangle matches Argentina well.

Note that there are no similar triangles on a sphere: if you change the lengths of the sides proportionately, you change the vertex angles.

Solving a triangle on a pseudosphere

In a hyperbolic space, such as the surface of a pseudosphere, a surface that looks sorta like the bells of two trombones joined together, the law of cosines becomes

cosh(c) = cosh(a) cosh(b) + κ sinh(a) sinh(b) cos(C)

where κ < 0 is the curvature of the space. Note that if we set κ = 1 and delete all the hs this would become the law of cosines on a sphere.

Just as the sum of the angles in a triangle add up to more than 180° on a sphere, and exactly 180° in a plane, they add up to less than 180° on a pseudosphere. I suppose you could call the difference between 180° and the sum of the vertex angles the spherical deficiency by analogy with spherical excess, but I don’t recall hearing that term used.

Related posts

  • Distance between two cities
  • Pythagorean theorem on a sphere
  • Trig in hyperbolic geometry

The post Solving a triangle the size of Argentina first appeared on John D. Cook.

Previous Post
Next Post

Recent Posts

  • After its data was wiped, KiranaPro’s co-founder cannot rule out an external hack
  • Meet the Finalists: VivaTech’s 5 Most Visionary Startups of 2025
  • Trump fast-tracks supersonic travel, amid spate of flight-related executive orders
  • TechCrunch Mobility: How Jony Ive’s LoveFrom helped Rivian and what Uber’s next-generation playbook looks like
  • Omada Health IPO signals healthier market, avoids ‘down-round’ trend

Categories

  • Industry News
  • Programming
  • RSS Fetched Articles
  • Uncategorized

Archives

  • June 2025
  • May 2025
  • April 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023

Tap into the power of Microservices, MVC Architecture, Cloud, Containers, UML, and Scrum methodologies to bolster your project planning, execution, and application development processes.

Solutions

  • IT Consultation
  • Agile Transformation
  • Software Development
  • DevOps & CI/CD

Regions Covered

  • Montreal
  • New York
  • Paris
  • Mauritius
  • Abidjan
  • Dakar

Subscribe to Newsletter

Join our monthly newsletter subscribers to get the latest news and insights.

© Copyright 2023. All Rights Reserved by Soatdev IT Consulting Inc.