SoatDev IT Consulting
SoatDev IT Consulting
  • About us
  • Expertise
  • Services
  • How it works
  • Contact Us
  • News
  • September 17, 2023
  • Rss Fetcher

Mathematicians often speak informally about the relative simplicity of rational numbers. For example, musical intervals that correspond to simple fractions have less tension than intervals that correspond to more complicated fractions.

Such informal statements can be made more precise using height functions. There are a variety of height functions designed for different applications, but the most common height function defines the height of a fraction p/q in lowest terms to be the sum of the numerator and denominator:

height(p/q) = |p| + |q|.

This post will look at how this applies to musical intervals, to approximations for π, and the number of days in a year.

Musical intervals

Here are musical intervals, ranked by the height of their just tuning frequency ratios.

  1. octave (2:1)
  2. fifth (3:2)
  3. forth (4:3)
  4. major sixth (5:3)
  5. major third (5:4)
  6. minor third (6:5)
  7. minor sixth (8:5)
  8. minor seventh (9:5)
  9. major second (10:9)
  10. major seventh (15:8)
  11. minor second (16:15)
  12. augmented fourth (45:32)

The least tension is an interval of an octave. The next six intervals are considered consonant. A minor seventh is considered mildly dissonant, and the rest are considered more dissonant. The most dissonant interval is the augmented fourth, also known as a tritone because it is the same interval as three whole steps.

Incidentally, a telephone busy signal consists of two pitches, 620 Hz and 480 Hz. This is a ratio of 24:31, which has a height of 54. This is consistent with the signal being moderately dissonant.

Approximations to π

The first four continued fraction approximations to π are 3, 22/7, 333/106, and 335/113.

Continued fraction convergents give the best rational approximation to an irrational for a given denominator. But for a height value that is not the height of a convergent, the best approximation might not be a convergent.

For example, the best approximation to π with height less than or equal to 333 + 106 is 333/106. But the best approximation with height less than or equal to 400 is 289/92, which is not a convergent of the continued fraction for π.

Days in a year

The number of days in a year is 365.2424177. Obviously that’s close to 365 1/4, and 1/4 is the best approximation to 0.2424177 for its height.

The Gregorian calendar has 97 leap days every 400 years, which approximates 0.2424177 with 97/400. This approximation has practical advantages for humans, but 8 leap days every 33 years would be a more accurate approximation with a much smaller height.

Related posts

  • Calendars and continued fractions
  • Circle of fifths and roots of two
  • Dial tone and busy signal

The post Rational height functions first appeared on John D. Cook.

Previous Post
Next Post

Recent Posts

  • Startup Battlefield 200: Final call — last day to apply
  • Apple updates Spotlight to take actions on your Mac
  • Apple brings ChatGPT and other AI models to Xcode
  • Apple TV’s tvOS 26 gets ‘Liquid Glass’ treatment and profile-switching feature
  • At WWDC 2025, Apple introduces an AI-powered Shortcuts app

Categories

  • Industry News
  • Programming
  • RSS Fetched Articles
  • Uncategorized

Archives

  • June 2025
  • May 2025
  • April 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023

Tap into the power of Microservices, MVC Architecture, Cloud, Containers, UML, and Scrum methodologies to bolster your project planning, execution, and application development processes.

Solutions

  • IT Consultation
  • Agile Transformation
  • Software Development
  • DevOps & CI/CD

Regions Covered

  • Montreal
  • New York
  • Paris
  • Mauritius
  • Abidjan
  • Dakar

Subscribe to Newsletter

Join our monthly newsletter subscribers to get the latest news and insights.

© Copyright 2023. All Rights Reserved by Soatdev IT Consulting Inc.