SoatDev IT Consulting
SoatDev IT Consulting
  • About us
  • Expertise
  • Services
  • How it works
  • Contact Us
  • News
  • July 23, 2024
  • Rss Fetcher

The previous post looked at the probability that a random n by n matrix over a finite field of order q is invertible. This works out to be

prod_{i=1}^n left(1 - frac{1}{q^i}right)

This function of q and n comes up in other contexts as well and has a name that we will get to shortly.

Pochhammer symbols

Leo August Pochhammer (1841–1920) defined the kth rising power of x by

(x)_k = x(x + 1)(x + 2)cdots(x + k - 1)

Rising and falling powers come up naturally in combinatorics, finite difference analogs of calculus, and in the definition of hypergeometric functions.

q-Pochhammer symbols

The q-analog of the Pochhammer symbol is defined as

(a;q)_n = prod_{k=0}^{n-1} (1-aq^k)=(1-a)(1-aq)(1-aq^2)cdots(1-aq^{n-1})

Like the Pochhammer symbol, the q-Pochhammer symbol also comes up in combinatorics.

In general, q-analogs of various concepts are generalizations that reduce to the original concept in some sort of limit as q goes to 1. The relationship between the q-Pochhammer symbol and the Pochhammer symbol is

lim_{qto 1} frac{(q^x;q)_n}{(1-q)^n} = (x)_n
For a simpler introduction to q-analogs, see this post on q-factorial and q-binomial coefficients.

Back to our probability problem

The motivation for this post was to give a name to the function that gives probability a random n by n matrix over a finite field of order q is invertible. In the notation above, this function is (1/q; 1/q)n.

There’s a confusing notational coincidence here. The number of elements in a finite field is usually denoted by q. The q in q-analogs such as the q-Pochhammer symbol has absolute value less than 1. It’s a coincidence that they both use the letter q, and the q in our application of q-Pochhammer symbols is the reciprocal of the q representing the order of a finite field.

I mentioned in the previous post that the probability of the matrix being invertible is a decreasing function of n. This probability decreases to a positive limit, varying with the value of q. This limit is (1/q; 1/q)∞. Here the subscript ∞ denotes that we take the limit in (1/q; 1/q)n as n goes to infinity. There’s no problem here because the infinite product converges.

Mathematica and plotting

The q-Pochhammer symbol (a; q)n is implemented in Mathematica as QPochhammer[a, q, n] and the special case (q; q)∞ is implemented as QPochhammer[q]. We can use the latter to make the following plot.

Plot[QPochhammer[q], {q, -1, 1}]

Recall that the q in our motivating application is the reciprocal of the q in the q-Pochhhammer symbol. This says for large fields, the limiting probability that an n by n matrix is invertible as n increases is near 1, but that for smaller fields the limiting probability is also smaller. For q = 2, the probability is 0.288788.

Plot[QPochhammer[1/q], {q, 2, 100}, PlotRange -> All]

Related posts

  • Hidden double factorial
  • q-logarithms and entropy

The post q-analog of rising powers first appeared on John D. Cook.

Previous Post
Next Post

Recent Posts

  • Microsoft’s Satya Nadella is choosing chatbots over podcasts
  • MIT disavows doctoral student paper on AI’s productivity benefits
  • Laser-powered fusion experiment more than doubles its power output
  • TechCrunch Week in Review: Coinbase gets hacked
  • Epic Games asks judge to force Apple to approve Fortnite

Categories

  • Industry News
  • Programming
  • RSS Fetched Articles
  • Uncategorized

Archives

  • May 2025
  • April 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023

Tap into the power of Microservices, MVC Architecture, Cloud, Containers, UML, and Scrum methodologies to bolster your project planning, execution, and application development processes.

Solutions

  • IT Consultation
  • Agile Transformation
  • Software Development
  • DevOps & CI/CD

Regions Covered

  • Montreal
  • New York
  • Paris
  • Mauritius
  • Abidjan
  • Dakar

Subscribe to Newsletter

Join our monthly newsletter subscribers to get the latest news and insights.

© Copyright 2023. All Rights Reserved by Soatdev IT Consulting Inc.