SoatDev IT Consulting
SoatDev IT Consulting
  • About us
  • Expertise
  • Services
  • How it works
  • Contact Us
  • News
  • June 12, 2024
  • Rss Fetcher

A few days ago I wrote about eigenvector centrality, a way of computing which nodes in a network are most important. Rather than simply looking for the most highly connected nodes, it looks for nodes that are highly connected to nodes that are highly connected. It’s the idea behind Google’s PageRank algorithm.

Adjacency matrices

One way to capture the structure of a graph is its adjacency matrix A. Each element aij of this matrix equals 1 if there is an edge between the ith and jth node and a 0 otherwise. If you square the matrix A, the (i, j) entry of the result tells you how many paths of length 2 are between the ith and jth nodes. In general, the (i, j) entry of An tells you how many paths of length n there are between the corresponding nodes.

Power method

Calculating eigenvector centrality requires finding an eigenvector associated with the largest eigenvalue of A. One way to find such an eigenvector is the power method. You start with a random initial vector and repeatedly multiply it by A. This produces a sequence of vectors that converges to the eigenvector we’re after.

Conceptually this is the same as computing An first and multiplying it by the random initial vector. So not only does the matrix An count paths of length n, for large n it helps us compute eigenvector centrality.

Theoretical details

Now for a little fine print. The power method will converge for any starting vector that has some component in the direction of the eigenvector you’re trying to find. This is almost certainly the case if you start with a vector chosen at random. The power method also requires that the matrix has a single eigenvector of largest magnitude and that its associated eigenspace have dimension 1. The post on eigenvector centrality stated that these conditions hold, provided the network is connected.

Computational practicalities

In principle, you could use calculate eigenvector centrality by computing An for some large n. In practice, you’d never do that. For a square matrix of size N, a matrix-vector product takes O(N²) operations, whereas squaring A requires O(N³) operations. So you would repeatedly apply A to a vector rather than computing powers of A.

Also, you wouldn’t use the power method unless A is sparse, making it relatively efficient to multiply by A. If most of the entries of A are zeros, and there is an exploitable pattern to where the non-zero elements are located, you can multiply A by a vector with far less than N² operations.

The post Power method and centrality first appeared on John D. Cook.

Previous Post
Next Post

Recent Posts

  • 5 Tips on How to be Vigilant on Social Media
  • IT News Africa and Infobip Exclusive Webinar on Digital Loan Recovery for Africa’s BFSI Sector
  • Mysterious hacking group Careto was run by the Spanish government, sources say
  • 5 Dangers of Oversharing on Social Media
  • Can a dev environment spark joy? The Android team thinks so.

Categories

  • Industry News
  • Programming
  • RSS Fetched Articles
  • Uncategorized

Archives

  • May 2025
  • April 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023

Tap into the power of Microservices, MVC Architecture, Cloud, Containers, UML, and Scrum methodologies to bolster your project planning, execution, and application development processes.

Solutions

  • IT Consultation
  • Agile Transformation
  • Software Development
  • DevOps & CI/CD

Regions Covered

  • Montreal
  • New York
  • Paris
  • Mauritius
  • Abidjan
  • Dakar

Subscribe to Newsletter

Join our monthly newsletter subscribers to get the latest news and insights.

© Copyright 2023. All Rights Reserved by Soatdev IT Consulting Inc.