SoatDev IT Consulting
SoatDev IT Consulting
  • About us
  • Expertise
  • Services
  • How it works
  • Contact Us
  • News
  • March 5, 2024
  • Rss Fetcher

The definition of a subgroup is obvious, but the definition of a normal subgroup is subtle.

Widgets and subwidgets

The general pattern of widgets and subwidgets is that a widget is a set with some kind of structure, and a subwidget is a subset that has the same structure. This applies to vector spaces and subspaces, manifolds and submanifolds, lattices and sublattices, etc. Once you know the definition of a group, you can guess the definition of a subgroup.

But the definition of a normal subgroup is not something anyone would guess immediately after learning the definition of a group. The definition is not difficult, but its motivation isn’t obvious.

Standard definition

A subgroup H of a group G is a normal subgroup if for every g ∈ G,

g−1Hg = H.

That is, if h is an element of H, g−1hg is also an element of H. All subgroups of an Abelian group are normal because not only is g−1hg also an element of H, it’s the same element of H, i.e. g−1hg = h.

Alternative definition

There’s an equivalent definition of normal subgroup that I only ran across recently in a paper by Francis Masat [1]. A subgroup H of a group G is normal if for every pair of elements a and b such that ab is in H, ba is also in H. With this definition it’s obvious that every subgroup of an Abelian group is normal because ab = ba for any a and b.

It’s an easy exercise to show that Masat’s definition is equivalent to the usual definition. Masat’s definition seems a little more motivated. It’s requiring some vestige of commutativity. It says that a subgroup H of a non-Abelian group G has some structure in common with subgroups of normal groups if this weak replacement for commutativity holds.

Categories

Category theory has a way of defining subobjects in general that basically formalizes the notion of widgets and subwidgets above. It also has a way of formalizing normal subobjects, but this is more recent and more complicated.

The nLab page on normal subobjects says “The notion was found relatively late.” The page was last edited in 2016 and says it is “to be finished later.” Given how exhaustively thorough nLab is on common and even not-so-common topics, this implies that the idea of normal subobjects is not mainstream.

I found a recent paper that discusses normal subobjects [2] and suffice it to say it’s complicated. This suggests that although analogs of subgroups are common across mathematics, the idea of a normal subgroup is more or less unique to group theory.

Related posts

  • The relation “normal subgroup of” is not transitive
  • Normal and non-normal subgroups
  • Analogy between prime numbers and simple groups

[1] Francis E. Masat. A Useful Characterization of a Normal Subgroup. Mathematics Magazine, May, 1979, Vol. 52, No. 3, pp. 171–173

[2] Dominique Bourn and Giuseppe Metere. A note on the categorical notions of normal subobject and of equivalence class. Theory and Applications of Categories, Vol 36, No. 3, 2021, pp. 65–101.

The post Normal subgroups are subtle first appeared on John D. Cook.

Previous Post
Next Post

Recent Posts

  • Anthropic’s AI is writing its own blog — with human oversight
  • Now Deel is accusing Rippling of spying by ‘impersonating’ a customer
  • Google places another fusion power bet on TAE Technologies
  • The OpenAI board drama is reportedly turning into a movie
  • What is a technical assessment platform? Features, benefits, and choices for 2025

Categories

  • Industry News
  • Programming
  • RSS Fetched Articles
  • Uncategorized

Archives

  • June 2025
  • May 2025
  • April 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023

Tap into the power of Microservices, MVC Architecture, Cloud, Containers, UML, and Scrum methodologies to bolster your project planning, execution, and application development processes.

Solutions

  • IT Consultation
  • Agile Transformation
  • Software Development
  • DevOps & CI/CD

Regions Covered

  • Montreal
  • New York
  • Paris
  • Mauritius
  • Abidjan
  • Dakar

Subscribe to Newsletter

Join our monthly newsletter subscribers to get the latest news and insights.

© Copyright 2023. All Rights Reserved by Soatdev IT Consulting Inc.