SoatDev IT Consulting
SoatDev IT Consulting
  • About us
  • Expertise
  • Services
  • How it works
  • Contact Us
  • News
  • May 14, 2025
  • Rss Fetcher

The map that takes a quaternion x to the quaternion qx is linear, so it can be represented as multiplication by a matrix. The same is true of the map that takes x to xq, but the two matrices are not the same because quaternion multiplication does not commute.

Let q = a + bi + cj + dk and let qM be the matrix that represents multiplication on the left by q. Then

_qM = begin{bmatrix} a & -b & -c & -d \ b & a & -d & c \ c & d & a & -b \ d & -c & b & a \ end{bmatrix}

Now let Mq be the matrix that represents multiplication on the right by q. Then

M_q = begin{bmatrix} a & -b & -c & -d \ b & a & d & -c \ c & -d & a & b \ d & c & -b & a \ end{bmatrix}

Can prove both matrix representations are correct by showing that they do the right thing when q = 1, i, j, and k. The rest follows by linearity.

You might speculate that the matrix representation for multiplying on the right by q might be the transpose of the matrix representation for multiplying on the left by q. You can look at the matrices above and see that’s not the case.

In this post I talk about how to represent rotations with quaterions, and in this post I give an equation for the equivalent rotation matrix for a rotation described by a quaternion. You can prove that the matrix representation is correct by multiplying out qM and Mq* . Keep in mind that q in that case is a unit quaterion, so the sum of the squares of its components add to 1.

Related posts

  • Dot, cross, and quaternion Products
  • Faster quaternion rotations
  • Matrix representation of number systems

The post Multiplying by quaternions on the left and right first appeared on John D. Cook.

Previous Post
Next Post

Recent Posts

  • Y Combinator startup Firecrawl is ready to pay $1M to hire three AI agents as employees
  • Build, don’t bind: Accel’s Sonali De Rycker on Europe’s AI crossroads
  • OpenAI’s planned data center in Abu Dhabi would be bigger than Monaco
  • Google I/O 2025: What to expect, including updates to Gemini and Android 16
  • Thousands of people have embarked on a virtual road trip via Google Street View

Categories

  • Industry News
  • Programming
  • RSS Fetched Articles
  • Uncategorized

Archives

  • May 2025
  • April 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023

Tap into the power of Microservices, MVC Architecture, Cloud, Containers, UML, and Scrum methodologies to bolster your project planning, execution, and application development processes.

Solutions

  • IT Consultation
  • Agile Transformation
  • Software Development
  • DevOps & CI/CD

Regions Covered

  • Montreal
  • New York
  • Paris
  • Mauritius
  • Abidjan
  • Dakar

Subscribe to Newsletter

Join our monthly newsletter subscribers to get the latest news and insights.

© Copyright 2023. All Rights Reserved by Soatdev IT Consulting Inc.