SoatDev IT Consulting
SoatDev IT Consulting
  • About us
  • Expertise
  • Services
  • How it works
  • Contact Us
  • News
  • July 17, 2023
  • Rss Fetcher

John Tukey developed his so-called g-and-h distribution to be very flexible, having a wide variety of possible values of skewness and kurtosis. Although the reason for the distribution’s existence is its range of possible skewness and values, calculating the skewness and kurtosis of the distribution is not simple.

Definition

Let φ be the function of one variable and four parameters defined by

varphi(x; a, b, g, h) = a + bleft( frac{exp(gx) - 1}{g} right) exp(hx^2/2)

A random variable Y has a g-and-h distribution if it has the same distribution as φ(Z; a, b, g, h) where Z is a standard normal random variable. Said another way, if Y has a g-and-h distribution then the transformation φ-1 makes the data normal.

The a and b parameters are for location and scale. The name of the distribution comes from the parameters g and h that control skewness and kurtosis respectively.

The transformation φ is invertible but φ-1 does not have a closed-form; φ-1 must be computed numerically. It follows that the density function for Y does not have a closed form either.

Special cases

The g distribution is the g-and-h distribution with h = 0. It generalizes the log normal distribution.

The limit of the g-and-h distribution as g does to 0 is the h distribution.

If g and h are both zero we get the normal distribution.

Calculating skewness and kurtosis

The following method of computing the moments of Y comes from [1].

Define f by

f(g, h, i) = frac{1}{g^isqrt{1 - ih}} sum_{r=0}^i binom{i}{r} expleft(frac{((i-r)g)^2}{2(1-ih)}right)

Then the raw moments of Y are given by

text{E} , Y^m = sum_{i=0}^m binom{m}{i} a^{m-i}b^i f(g,h,i)

Skewness is the 3rd centralized moment and kurtosis is the 4th centralized moment. Equations for finding centralized moments from raw moments are given here.

Related posts

  • Generalized normal distribution
  • Burr distribution
  • Computing skewness and kurtosis in one pass

[1] James B. McDonald and Patrick Turley. Distributional Characteristics: Just a Few More Moments. The American Statistician, Vol. 65, No. 2 (May 2011), pp. 96–103

The post Moments of Tukey’s g-and-h distribution first appeared on John D. Cook.

Previous Post
Next Post

Recent Posts

  • Microsoft’s Satya Nadella is choosing chatbots over podcasts
  • MIT disavows doctoral student paper on AI’s productivity benefits
  • Laser-powered fusion experiment more than doubles its power output
  • TechCrunch Week in Review: Coinbase gets hacked
  • Epic Games asks judge to force Apple to approve Fortnite

Categories

  • Industry News
  • Programming
  • RSS Fetched Articles
  • Uncategorized

Archives

  • May 2025
  • April 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023

Tap into the power of Microservices, MVC Architecture, Cloud, Containers, UML, and Scrum methodologies to bolster your project planning, execution, and application development processes.

Solutions

  • IT Consultation
  • Agile Transformation
  • Software Development
  • DevOps & CI/CD

Regions Covered

  • Montreal
  • New York
  • Paris
  • Mauritius
  • Abidjan
  • Dakar

Subscribe to Newsletter

Join our monthly newsletter subscribers to get the latest news and insights.

© Copyright 2023. All Rights Reserved by Soatdev IT Consulting Inc.