SoatDev IT Consulting
SoatDev IT Consulting
  • About us
  • Expertise
  • Services
  • How it works
  • Contact Us
  • News
  • August 8, 2023
  • Rss Fetcher

A Möbius transformation is a function of the form

g(z) = frac{az + b}{cz + d}

where ad – bc = 1.

We usually think of z as a complex number, but it doesn’t have to be. We could define Möbius transformations in any context where we can multiply, add, and divide, i.e. over any field. In particular, we could work over a finite field such as the integers modulo a prime. The plot above represents a Möbius transformation over a finite field which we will describe below.

There is a subtle point, however. In the context of the complex numbers, the transformation above doesn’t quite map the complex plane onto the complex plane. It maps the complex plane minus one point to the complex plane minus one point. The domain is missing the point z = −d/c because that value makes the denominator zero. It’s also missing a point in the range, namely a/c.

The holes in the domain and range are a minor irritant, analogous to the pea in The Princess and the Pea. You can work around the holes, though the formalism is a little complicated. But over a finite field, the holes are a big deal. If you’re working over the integers mod 7, for example, then 1/7th of your domain is missing.

In the case of the complex numbers, the usual fix is to replace the complex numbers ℂ with the extended complex numbers ℂ ∪ ∞ and say that g(−d/c) = ∞ and g(∞) = a/c. There are a couple ways to make this more rigorous/elegant. The topological approach is to think of ℂ ∪ ∞ as the Riemann sphere. The algebraic approach is to think of it as a projective space.

Now let’s turn to finite fields, say the integers mod 17, which we will write as ℤ17. For a concrete example, let’s set a = 3, b = 8, c = 6, and d = 5. Then ad – bc = 1 mod 17. The multiplicative inverse of 6 mod 17 is 3, so we have a hole in the domain when

z = −d/c = −5/6 = −5 × 3 = − 15 = 2 mod 17.

Following the patch used with complex numbers, we define g(2) to be ∞, and we define

g(∞) = a/c = 3/6 = 3 × 3 = 9 mod 17.

That’s all fine, except now we’re not actually working over ℤ17 but rather ℤ17 ∪ ∞. We could formalize this by saying we’re working in a projective space over ℤ17. For this post let’s just say we’re working over set G with 18 elements that mostly follows the rules of ℤ17 but has a couple additional rules.

Now our function g maps G onto G. No holes.

Here’s how we might implement g in Python.

    def g(n):
        if n == 2:
            return 17
        if n == 17:
            return 9
        a, b, c, d = 3, 8, 6, 5
        denom = c*n + d
        denom_inverse = pow(denom, -1, 17)
        return (a*n + b)*denom_inverse % 17

The plot at the top of the post arranges 18 points uniformly around a circle and connects n to g(n).

    from numpy import pi, linspace, sin, cos
    import matplotlib.pyplot as plt

    θ = 2*pi/18
    t = linspace(0, 2*pi)
    plt.plot(cos(t), sin(t), 'b-')

    for n in range(18):
        plt.plot(cos(n*θ), sin(n*θ), 'bo')
        plt.plot([cos(n*θ), cos(g(n)*θ)],
                 [sin(n*θ), sin(g(n)*θ)], 'g-')
    plt.gca().set_aspect("equal")
    plt.show()

Application to cryptography

What use is this? Möbius transformations over finite fields [1] are “higgledy-piggledy” in the words of George Marsaglia, and so they can be used to create random-like permutations. In particular, Möbius transformations over finite fields are used to design S-boxes for use in symmetric encryption algorithms.

Related posts

  • Point at infinity
  • Feistel networds
  • Cryptography highlights

[1] Technically, finite fields plus an element at infinity.

[2] “If the [pseudorandom] numbers are not random, they are at least higgledy-piggledy.” — RNG researcher George Marsaglia

The post Möbius transformations over a finite field first appeared on John D. Cook.

Previous Post
Next Post

Recent Posts

  • Figma moves closer to a blockbuster IPO that could raise $1.5B
  • Road to Battlefield: Central Eurasia’s gateway to TechCrunch Startup Battlefield
  • X is piloting a program that lets AI chatbots generate Community Notes
  • The GOP’s big spending bill could kill renewable energy projects
  • Catalio Capital closes over $400M Fund IV

Categories

  • Industry News
  • Programming
  • RSS Fetched Articles
  • Uncategorized

Archives

  • July 2025
  • June 2025
  • May 2025
  • April 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023

Tap into the power of Microservices, MVC Architecture, Cloud, Containers, UML, and Scrum methodologies to bolster your project planning, execution, and application development processes.

Solutions

  • IT Consultation
  • Agile Transformation
  • Software Development
  • DevOps & CI/CD

Regions Covered

  • Montreal
  • New York
  • Paris
  • Mauritius
  • Abidjan
  • Dakar

Subscribe to Newsletter

Join our monthly newsletter subscribers to get the latest news and insights.

© Copyright 2023. All Rights Reserved by Soatdev IT Consulting Inc.