SoatDev IT Consulting
SoatDev IT Consulting
  • About us
  • Expertise
  • Services
  • How it works
  • Contact Us
  • News
  • April 18, 2024
  • Rss Fetcher

If you know the dimensions of a carpet, what will the dimensions be when you roll it up into a cylinder?

If you know the dimensions of a rolled-up carpet, what will the dimensions be when you unroll it?

This post answers both questions.

Flexible carpet: solid cylinder

The edge of a rolled-up carpet can be described as an Archimedian spiral. In polar coordinates, this spiral has the equation

r = hθ / 2π

where h is the thickness of the carpet. The previous post gave an exact formula for the length L of the spiral, given the maximum value of θ which we denoted T. It also gave a simple approximation that is quite accurate when T is large, namely

L = hT² / 4π

If r1 is the radius of the carpet as a rolled up cylinder, r1 = hT / 2π and so T = 2π r1 / h. So when we unroll the carpet

L = hT² / 4π = πr1² / h.

Now suppose we know the length L and want to find the radius r when we roll up the carpet.

T = √(hL/π).

Stiff carpet: hollow cylinder

The discussion so far has assumed that the spiral starts from the origin, i.e. the carpet is rolled up so tightly that there’s no hole in the middle. This may be a reasonable assumption for a very flexible carpet. But if the carpet is stiff, the rolled up carpet will not be a solid cylinder but a cylinder with a cylindrical hole in the middle.

In the case of a hollow cylinder, there is an inner radius r0 and an outer radius r1. This means θ runs from T0 = 2π r0/h to T1 = 2πr1/h.

To find the length of the spiral running from T0  to T1 we find the length of a spiral that runs from 0 to T1 and subtract the length of a spiral from 0 to T0

L = πr1² / h − πr0² / h = π(r1² − r0²)/h.

This approximation is even better because the approximation is least accurate for small T, and we’ve subtracted off that part.

Now let’s go the other way around and find the outer radius r1 when we know the length L. We also need to know the inner radius r0. So suppose we are wrapping the carpet around a cardboard tube of radius r0. Then

r1 = √(r0² + hL/π).

The post How big will a carpet be when you roll or unroll it? first appeared on John D. Cook.

Previous Post
Next Post

Recent Posts

  • VUZ gets $12M to scale immersive video experiences across emerging markets and the U.S.
  • Crypto elite increasingly worried about their personal safety
  • Grok says it’s ‘skeptical’ about Holocaust death toll, then blames ‘programming error’
  • Heybike’s Alpha step-through e-bike is an affordable, all-terrain dreamboat
  • U.S. lawmakers have concerns about Apple-Alibaba deal

Categories

  • Industry News
  • Programming
  • RSS Fetched Articles
  • Uncategorized

Archives

  • May 2025
  • April 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023

Tap into the power of Microservices, MVC Architecture, Cloud, Containers, UML, and Scrum methodologies to bolster your project planning, execution, and application development processes.

Solutions

  • IT Consultation
  • Agile Transformation
  • Software Development
  • DevOps & CI/CD

Regions Covered

  • Montreal
  • New York
  • Paris
  • Mauritius
  • Abidjan
  • Dakar

Subscribe to Newsletter

Join our monthly newsletter subscribers to get the latest news and insights.

© Copyright 2023. All Rights Reserved by Soatdev IT Consulting Inc.