SoatDev IT Consulting
SoatDev IT Consulting
  • About us
  • Expertise
  • Services
  • How it works
  • Contact Us
  • News
  • July 28, 2025
  • Rss Fetcher

The elliptic curves Curve25519 and Ed25519 are both commonly used in applications. For example, Curve25519 is used in Proton Mail and Ed25519 is used in SSH.

The two curves are related, as the numerical parts in their names suggest. The two curves are equivalent in some sense that we will describe below.

An algebraic geometer would say that Curve25519 and Ed25519 are not isomorphic, but a cryptographer would say that they are isomorphic. That’s because the algebraic geometer cares about more structure than the cryptographer does.

Curve25519 is given by

M: v² = u³ + 486662u² + u

over the field Fq where q = 2255 − 19.

Ed25519 is given by

E: y² − x² = 1 − (121665/121666) x² y²

over the same field. The “25519” part of both names comes from q.

We use M for Curve25519 because it is a Montgomery curve, named after Peter Montgomery. We use E for Ed25519 because it is a twisted Edwards curve, named after Harold Edwards.

The algebraic geometer would say M and E are not isomorphic as algebraic curves [1] because the curves are not the same in all their structure. However, the cryptographer isn’t interested in elliptic curves per se, only the additive group that is defined on elliptic curves, and these groups are isomorphic. The isomorphism can be given by

x = √486664 u/v

y = (u − 1)/(u + 1)

Here √486664 is a square root mod q and division means multiplication by the multiplicative inverse mod q.

Even though the group isomorphism is simple and explicit, it’s not simple to prove that it is a group isomorphism. For a proof, see [2].

So if the additive groups of the two curves are isomorphic, why use one in some applications rather than the other? Each is used where its implementation is more efficient. Ed25519 is typically used in digital signatures (for example, in Monero) and Curve25519 is typically used in key exchange (for example, in secure web pages).

Related posts

  • What is an elliptic curve?
  • Monero’s elliptic curve
  • Efficient operations on Curve25519

[1] The map between (u, v) and (x, y) does serve as an isomorphism between the group structures. But it is a “birational equivalence” rather than an isomorphism because it has singularities at (−1, 0) and (0, 0).

[2] Daniel J. Bernstein, Tanja Lange, Faster addition and doubling on elliptic curves, in Asiacrypt 2007 [49] (2007), 29–50. URL: http://eprint.iacr.org/2007/286.

The post Equivalence between commonly used elliptic curves first appeared on John D. Cook.

Previous Post
Next Post

Recent Posts

  • AI data analyst startup Julius nabs $10M seed round
  • Waymo taps Avis to manage robotaxi fleet in Dallas
  • Harmonic, the Robinhood CEO’s AI math startup, launches an AI chatbot app
  • Flexport sells former freight unicorn Convoy’s tech 2 years after buying it
  • Women’s ‘red flag’ app Tea is a privacy nightmare

Categories

  • Industry News
  • Programming
  • RSS Fetched Articles
  • Uncategorized

Archives

  • July 2025
  • June 2025
  • May 2025
  • April 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023

Tap into the power of Microservices, MVC Architecture, Cloud, Containers, UML, and Scrum methodologies to bolster your project planning, execution, and application development processes.

Solutions

  • IT Consultation
  • Agile Transformation
  • Software Development
  • DevOps & CI/CD

Regions Covered

  • Montreal
  • New York
  • Paris
  • Mauritius
  • Abidjan
  • Dakar

Subscribe to Newsletter

Join our monthly newsletter subscribers to get the latest news and insights.

© Copyright 2023. All Rights Reserved by Soatdev IT Consulting Inc.