SoatDev IT Consulting
SoatDev IT Consulting
  • About us
  • Expertise
  • Services
  • How it works
  • Contact Us
  • News
  • June 1, 2023
  • Rss Fetcher

A couple days ago I wrote a post about a probability problem that involved calculating Stirling numbers. There are two kinds of Stirling numbers, creatively called “Stirling numbers of the first kind” and “Stirling numbers of the second kind.” The second kind come up more often in application, and so when authors say “Stirling numbers” without qualification, they mean the second kind. That’s the convention I’ll use here.

The Stirling number S(n, k) can be computed via the following series, though we will take a different approach for reasons explained below.

S(n,k) = frac{1}{k!}sum_{i = 0}^k (-1)^i {k choose i} (k-i)^n

Problem statement

This made me think of the following problem. Suppose you want to calculate Stirling numbers. You want to use integer arithmetic in order to get exact results.

And suppose you can use integers as large as you like, but you have to specify the maximum integer size before you start calculating. Imagine you have to pay $N to work with N-digit integers, so you want to not use a larger value of N than necessary.

Intermediate results

There are a couple problems with using the equation above. Direct implementation of the equation would first calculate k! S(n, k) first, then divide by k! to get S(n, k). This would be costly because it would require calculating a number k! times bigger than the desired final result. (You could refactor the equation so that there is no division by k! at the end, but this gives an expression that includes non-integer terms.)

In the earlier post, I actually needed to calculate k! S(n, k) rather than S(n, k) and so this wasn’t a problem. This brings up the second problem with the equation above. It’s an alternating series, and it’s not clear whether evaluating the series produces intermediate results that are larger than the final result.

Recursion

Stirling numbers can be computed recursively using

S(n+1, k) = k S(n,k) + S(n, k-1)

with the base cases S(n, n) = 1 for n ≥ 0 and S(n, 0) = S(0, n) for n > 0. This computes Stirling numbers via a sum of smaller Stirling numbers, and so the intermediate results are no larger than the final result.

So now we’re left with the question of how big Stirling numbers can be. Before computing S(n, k) you need an upper bound on how many digits it will have.

Bounding Stirling numbers

Stirling numbers can be bound in terms of binomial coefficients.

S(n, k) leq frac{1}{2} binom{n}{k}k^{n-k}

This reduces the problem to finding an upper bound on binomial coefficients. I wrote about a simple bound on binomial coefficients here.

The post Computing Stirling numbers with limited integers first appeared on John D. Cook.

Previous Post
Next Post

Recent Posts

  • Elon Musk tries to stick to spaceships
  • Thousands of Netflix fans gather for Tudum
  • Early AI investor Elad Gil finds his next big bet: AI-powered rollups
  • Gardener’s ellipse
  • Fitting a parabola to an ellipse and vice versa

Categories

  • Industry News
  • Programming
  • RSS Fetched Articles
  • Uncategorized

Archives

  • June 2025
  • May 2025
  • April 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023

Tap into the power of Microservices, MVC Architecture, Cloud, Containers, UML, and Scrum methodologies to bolster your project planning, execution, and application development processes.

Solutions

  • IT Consultation
  • Agile Transformation
  • Software Development
  • DevOps & CI/CD

Regions Covered

  • Montreal
  • New York
  • Paris
  • Mauritius
  • Abidjan
  • Dakar

Subscribe to Newsletter

Join our monthly newsletter subscribers to get the latest news and insights.

© Copyright 2023. All Rights Reserved by Soatdev IT Consulting Inc.