SoatDev IT Consulting
SoatDev IT Consulting
  • About us
  • Expertise
  • Services
  • How it works
  • Contact Us
  • News
  • August 21, 2023
  • Rss Fetcher

Jeweler examining gemstones

This morning I wrote about Dan Piponi’s fake prime function. This evening I thought about it again and wondered whether the chi-squared test could tell the difference between the distribution of digits in real primes and fake primes.

When data fall into a number of buckets, with a moderate number of items expected to fall in each bucket, the chi squared test attempts to measure how the actual counts in each bucket compare to the expected counts.

This is a two-sided test. For example, suppose you expect 12% of items to fall in bucket A and 88% to fall in bucket B. Now suppose you test 1,000 items. It would be suspicious if only 50 items landed in bucket A since we’d expect around 120. On the other hand, getting exactly 120 items would be suspicious too. Getting exactly the expected number is unexpected!

Let’s look a the primes, genuine and fake, less than N = 200. We’ll take the distribution of digits in the list of primes as the expected values and compare to the distribution of the digits in the fake primes.

When I ran this experiment, I got a chi-squared value of 7.77. This is an unremarkable value for a sample from a chi-squared distribution with 9 degrees of freedom. (There are ten digits, but only nine degrees of freedom because if you rule out nine possibilities then digit is determined with certainty.)

The p-value in this case, the probability of seeing a value as large as the one we saw or larger, is 0.557.

Next I increased N to 1,000 and ran the experiment again. Now I got a chi-squared value of 19.08, with a corresponding p-value of 0.024. When I set N to 10,000 I got a chi-squared value of 18.19, with a corresponding p-value of 0.033.

When I used N = 100,000 I got a chi-squared value of 130.26, corresponding to a p-value of 10-23. Finally, when I used N = 1,000,000 I got a chi-squared value of 984.7 and a p-value of 3.4 × 10-206.

In short, the chi-squared test needs a fair amount of data to tell that fake primes are fake. The distribution of digits for samples of fake primes less than a thousand or so is plausibly the same as that of actual primes, as far as the test can distinguish. But the chi-squared values get implausibly large for fake primes up to  100,000.

The post Can the chi squared test detect fake primes? first appeared on John D. Cook.

Previous Post
Next Post

Recent Posts

  • Better vibes and vibe coding with Gemini 2.5
  • Still no AI-powered, ‘more personalized’ Siri from Apple at WWDC 25
  • Here’s what’s coming to macOS Tahoe
  • Apple brings back tabs to the Photos app in iOS 26
  • OpenAI claims to have hit $10B in annual revenue

Categories

  • Industry News
  • Programming
  • RSS Fetched Articles
  • Uncategorized

Archives

  • June 2025
  • May 2025
  • April 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023

Tap into the power of Microservices, MVC Architecture, Cloud, Containers, UML, and Scrum methodologies to bolster your project planning, execution, and application development processes.

Solutions

  • IT Consultation
  • Agile Transformation
  • Software Development
  • DevOps & CI/CD

Regions Covered

  • Montreal
  • New York
  • Paris
  • Mauritius
  • Abidjan
  • Dakar

Subscribe to Newsletter

Join our monthly newsletter subscribers to get the latest news and insights.

© Copyright 2023. All Rights Reserved by Soatdev IT Consulting Inc.