SoatDev IT Consulting
SoatDev IT Consulting
  • About us
  • Expertise
  • Services
  • How it works
  • Contact Us
  • News
  • March 7, 2024
  • Rss Fetcher

A few years ago I wrote a post about approximating the solution to a differential equation even though the solution did not exist. You can ask a numerical method for a solution at a point past where the solution blows up to infinity, and it will dutifully give you a finite solution. The result is meaningless, but will give a result anyway.

The more you can know about the solution to a differential equation before you attempt to solve it numerically the better. At a minimum, you’d like to know whether there even is a solution before you compute it. Unfortunately, a lot of theorems along these lines are local in nature: the theorem assures you that a solution exists in some interval, but doesn’t say how big that interval might be.

Here’s a nice theorem from [1] that tells you that a solution is going to blow up in finite time, and it even tells you what that time is.

The initial value problem

y′ = g(y)

with y(0) = y0 with g(y) > 0 blows up at T if and only if the integral

int_{y_0}^infty frac{1}{g(t)} , dt
converges to T.

Note that it is not necessary to first find a solution then see whether the solution blows up.

Note also that an upper (or lower) bound on the integral gives you an upper (or lower) bound on T. So the theorem is still useful if the integral is hard to evaluate.

This theorem applies only to autonomous differential equations, i.e. the right hand side of the equation depends only on the solution y and not on the solution’s argument t. The differential equation alluded to at the top of the post is not autonomous, and so the theorem above does not apply. There are non-autonomous extensions of the theorem presented here (see, for example, [2]) but I do not know of a theorem that would cover the differential equation presented here.

[1] Duff Campbell and Jared Williams. Exloring finite-time blow-up. Pi Mu Epsilon Journal, Spring 2003, Vol. 11, No. 8 (Spring 2003), pp. 423–428

[2] Jacob Hines. Exploring finite-time blow-up of separable differential equations. Pi Mu Epsilon Journal, Vol. 14, No. 9 (Fall 2018), pp. 565–572

The post Blow up in finite time first appeared on John D. Cook.

Previous Post
Next Post

Recent Posts

  • Heybike’s Alpha step-through e-bike is an affordable, all-terrain dreamboat
  • U.S. lawmakers have concerns about Apple-Alibaba deal
  • Microsoft’s Satya Nadella is choosing chatbots over podcasts
  • MIT disavows doctoral student paper on AI’s productivity benefits
  • Laser-powered fusion experiment more than doubles its power output

Categories

  • Industry News
  • Programming
  • RSS Fetched Articles
  • Uncategorized

Archives

  • May 2025
  • April 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023

Tap into the power of Microservices, MVC Architecture, Cloud, Containers, UML, and Scrum methodologies to bolster your project planning, execution, and application development processes.

Solutions

  • IT Consultation
  • Agile Transformation
  • Software Development
  • DevOps & CI/CD

Regions Covered

  • Montreal
  • New York
  • Paris
  • Mauritius
  • Abidjan
  • Dakar

Subscribe to Newsletter

Join our monthly newsletter subscribers to get the latest news and insights.

© Copyright 2023. All Rights Reserved by Soatdev IT Consulting Inc.