SoatDev IT Consulting
SoatDev IT Consulting
  • About us
  • Expertise
  • Services
  • How it works
  • Contact Us
  • News
  • September 13, 2024
  • Rss Fetcher

I recently came across an upper bound I hadn’t seen before [1]. Given a binomial coefficient C(r, k), let

n = min(k, r − k)

and

m = r −  n.

Then for any ε > 0,

C(n + m, n) ≤ (1 + ε)n + m / εn.

The proof follows quickly from applying the binomial theorem to (1 + ε)n + m.

I could imagine how non-optimal choice of ε could be convenient in some context, it’s natural to want to see how good the upper bound is for the best ε, which works out to be ε = n/m.

A little algebra shows this value of ε leads to

C(n + m, n) ≤ (n + m)n + m / nn mn.

Note that while the original bound is not symmetric in n and m, the optimal bound is.

Returning to the original notation C(r, k), let’s see how tight the optimal bound is by plotting, as a function of r, the maximum relative error as a k varies.

The maximum relative error, over the range plotted, is very roughly r/10.

Related posts

  • Bounds on the central binomial coefficient
  • Non-integer binomial coefficients
  • q-binomial coefficients

[1] Grzegorz Łysik. The ε-binomial inequality. The Mathematical Gazette. Vol. 92, No. 523 (March 2008), pp. 97–99

The post Binomial bound first appeared on John D. Cook.

Previous Post
Next Post

Recent Posts

  • Khosla Ventures among VCs experimenting with AI-infused roll-ups of mature companies
  • Zoox issues second robotaxi software recall in a month following collision 
  • Landa promised real estate investing for $5. Now it’s gone dark.
  • What is Mistral AI? Everything to know about the OpenAI competitor
  • Apple CEO reportedly urged Texas’ governor to ditch online child safety bill

Categories

  • Industry News
  • Programming
  • RSS Fetched Articles
  • Uncategorized

Archives

  • May 2025
  • April 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023

Tap into the power of Microservices, MVC Architecture, Cloud, Containers, UML, and Scrum methodologies to bolster your project planning, execution, and application development processes.

Solutions

  • IT Consultation
  • Agile Transformation
  • Software Development
  • DevOps & CI/CD

Regions Covered

  • Montreal
  • New York
  • Paris
  • Mauritius
  • Abidjan
  • Dakar

Subscribe to Newsletter

Join our monthly newsletter subscribers to get the latest news and insights.

© Copyright 2023. All Rights Reserved by Soatdev IT Consulting Inc.