SoatDev IT Consulting
SoatDev IT Consulting
  • About us
  • Expertise
  • Services
  • How it works
  • Contact Us
  • News
  • April 17, 2024
  • Rss Fetcher

An Archimedian spiral has the polar equation

r = b θ1/n

This post will look at the case n = 1. I may look at more general values of n in a future post. The case n = 1 is the simplest case, and it’s the case I needed for the client project that motivated this post.

In this case the spacing between points where the spiral crosses an axis is constant. Call this constant h. Then

h = 2πb.

For example, when rolling up a carpet, h corresponds to the thickness of the carpet.

Suppose θ runs from 0 to 2πm, wrapping around the origin m times. We could approximate the spiral by m concentric circles of radius h, 2h, 3h, …, mh. To visualize this, we’re approximating the length of the red spiral on the left with that of the blue circles on the right.

Comparing Archimedes spiral and concentric circles

We could approximate this further by saying we have m/2 circles whose average radius is πmb. This suggests the length of the spiral should be approximately

2π²m²b

How good is this approximation? What happens to the relative error as θ increases? Intuitively, each wrap around the origin is more like a circle as θ increases, so we’d expect the approximation to improve for large θ.

According to Mathworld, the exact length of the spiral is

πbm √(1 + (2πm)²) + b arcsinh(2πm) /2

When m is so large that we can ignore the 1 in √(1 + (2πm)²) then the first term is the same as the circle approximation, and all that’s left is the arcsinh term, which is on the order of log m because

arcsinh(x) = log(x + (1 + x²)1/2).

So for large m, the arc length is on the order of m² while the error is on the order of log m. This means the relative error is O( log(m) / m² ). [1]

We’ve assumed m was an integer because that makes it easier to visual approximating the spiral by circles, but that assumption is not necessary. We could restate the problem in terms of the final value of θ. Say θ runs from 0 to T. Then we could solve

T = 2πm

for m and say that the approximate arc length is

½ bT²

and the exact length is

½ bT(1 + T²)1/2 + ½ b arcsinh(T).

The relative approximation error is O( log(T) / T² ).

Related posts

  • Logarithmic spiral
  • Spiral of Theodorus
  • Approximating a golden spiral

[1] The error in approximating √(1 + (2πm)²) with 2πm is on the order of 1/(4πm) and so is smaller than the logarithmic term.

The post Approximating a spiral by rings first appeared on John D. Cook.

Previous Post
Next Post

Recent Posts

  • Old Mutual Warns of Rising Deepfake Scams in South Africa
  • Cut Costs or Improve Customer Support? GenAI Says You Can Both
  • SANTACO Western Cape Signs Tech Partnership with Quickloc8
  • Deel wants Rippling to hand over any agreements involving paying the alleged spy
  • Telecommunications & IT Companies Form the Next Frontier for Growth & Cyber Crime across Africa

Categories

  • Industry News
  • Programming
  • RSS Fetched Articles
  • Uncategorized

Archives

  • May 2025
  • April 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023

Tap into the power of Microservices, MVC Architecture, Cloud, Containers, UML, and Scrum methodologies to bolster your project planning, execution, and application development processes.

Solutions

  • IT Consultation
  • Agile Transformation
  • Software Development
  • DevOps & CI/CD

Regions Covered

  • Montreal
  • New York
  • Paris
  • Mauritius
  • Abidjan
  • Dakar

Subscribe to Newsletter

Join our monthly newsletter subscribers to get the latest news and insights.

© Copyright 2023. All Rights Reserved by Soatdev IT Consulting Inc.