SoatDev IT Consulting
SoatDev IT Consulting
  • About us
  • Expertise
  • Services
  • How it works
  • Contact Us
  • News
  • July 30, 2023
  • Rss Fetcher

A very crude way to estimate π would be to find the perimeter of squares inside and outside a unit circle.

Circle with inscribed and circumscribed squares

The outside square has sides of length 2, so 2π < 8. The inside square has sides of length 2/√2, so 8/√2 < 2π. This tells us π is between 2.82 and 4. Not exciting, but it’s a start.

Finding the perimeter of an inscribed hexagon and a circumscribed hexagon would be better. Finding the perimeter of inscribed and circumscribed n-gons for larger values of n would be even better.

Archimedes and successors

Archimedes (287–212 BC) estimated π using inscribed and circumscribed 96-gons.

Aryabhata (476–450 AD) used Archimedes idea with n = 384 (3 × 27) and Vièta (1540–1603) used n = 39,3216 (3 × 217).

Accuracy

The perimeter of a regular n-gon inscribed in the unit circle is

Tn = 2n sin(π/n)

and the perimeter of a regular n-gon circumscribed on the unit circle is

Un = 2n cos(π/n).

We look at these formulas and see a way to calculate Tn and Un by plugging π/n into functions that calculate sine and cosine. But Archimedes et al had geometric ways of computing Tn and Un and used these to estimate π.

We can use the formulas above to evaluate the bounds above.

Archimedes: 3.1410 < π < 3.1427.

Aryabhata: 3.14155 < π < 3.14166.

Vièta: 3.14159265355 < π < 3.1415926536566.

Extrapolation

In 1654, Huygens discovered that algebraic combinations of the perimeter estimates for an n-gon and an (n/2)-gon could be better than either. So, for example, while Archimedes estimate based on a 96-gon is better than an estimate based on a 48-gon, you could combine the two to do better than both.

His series were

Sn = (4Tn − Tn/2)/3

and

Vn = (2Un + Tn/2)/3

Huygens did not prove that Sn and Vn were lower and upper bounds on 2π, but they are, and are much better than Tn and Un. Using a 48-gon and a 96-gon, for example, Huygens could get twice as many correct digits as Archimedes did with a 96-gon alone.

From a modern perspective, Huygens’ expressions can be seen as a first step toward what Richardson called “the deferred approach to the limit” in 1927, or what is often called Richardson extrapolation. By expanding the expressions for Tn and Un as Taylor series in h = 1/n, we can take algebraic combinations of expressions for varying values of h that eliminate small powers of h, increasing the order of the approximation.

Huygens came up with expressions that canceled out terms of order h2 and leaving terms of order h4. (The odd-order terms were already missing from sin(h)/h and tan(h)/h.)

Milne (1896–1950) came up with a systematic approach that could, for example, use polygons with n, n/2, and n/4 sides to come up with an approximation for π with order h6 and to form approximation with order equal to any even power of h. By making clever use of perimeter values known to Archimedes, Milne could obtain more accurate results than those that Aryabhata and Vièta obtained.

Richardson saw a general pattern in the work of Milne and others. We take expressions involving limits as h goes to 0, i.e. derivatives, and to do some manipulation before letting some h go to 0. Taking the derivative would be to take a limit immediately. But if we let some terms cancel each other out before taking the limit, we can get approximations that converge more quickly.

Richardson developed this idea used it as a way to solve a variety of problems more efficiently, such as numerical integration and numerically solving differential equations.

 

Reference: Survey of Extrapolation Process in Numerical Analysis by D. C. Joyce. SIAM Review , Oct., 1971, Vol. 13, No. 4, pp. 435–490

 

The post Ancient estimate of π and modern numerical analysis first appeared on John D. Cook.

Previous Post
Next Post

Recent Posts

  • Dungeons, Dragons, and Numbers
  • My favorite paper: H = W
  • Naukri exposed recruiter email addresses, researcher says
  • Khosla Ventures among VCs experimenting with AI-infused roll-ups of mature companies
  • Presidential seals, ‘light vetting,’ $100,000 gem-encrusted watches, and a Marriott afterparty

Categories

  • Industry News
  • Programming
  • RSS Fetched Articles
  • Uncategorized

Archives

  • May 2025
  • April 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023

Tap into the power of Microservices, MVC Architecture, Cloud, Containers, UML, and Scrum methodologies to bolster your project planning, execution, and application development processes.

Solutions

  • IT Consultation
  • Agile Transformation
  • Software Development
  • DevOps & CI/CD

Regions Covered

  • Montreal
  • New York
  • Paris
  • Mauritius
  • Abidjan
  • Dakar

Subscribe to Newsletter

Join our monthly newsletter subscribers to get the latest news and insights.

© Copyright 2023. All Rights Reserved by Soatdev IT Consulting Inc.