SoatDev IT Consulting
SoatDev IT Consulting
  • About us
  • Expertise
  • Services
  • How it works
  • Contact Us
  • News
  • July 2, 2023
  • Rss Fetcher

The beta function B(x, y) is defined by

B(x, y) = int_0^1 t^{x-1} (1-t)^{y-1}, dt

and is the normalizing constant for the beta probability distribution. It is related to the gamma function via

B(x, y) = frac{Gamma(x),Gamma(y)}{Gamma(x+y)}

The beta function comes up often in applications. It can be challenging to work with, however, and so estimates for the function are welcome.

The function 1/xy gives simple approximation and upper bound for B(x, y). Alzer [1] proved that when x > 1 and y > 1

0 leq frac{1}{xy} - B(x,y) leq b

where the constant b is defined by

b = max_{xgeq1}left( frac{1}{x^2} - frac{Gamma(x)^2}{Gamma(2x)} right) = 0.08731ldots

Cerone [2] gives a different bound which varies with x and y and is usually better than Alzer’s bound. For x and y greater than 1, Cerone shows

0 leq frac{1}{xy} - B(x,y) leq C(x) C(y) leq b'

where

C(x) = frac{x-1}{xsqrt{2x-1}}

and

C(x) = frac{x-1}{xsqrt{2x-1}}

Cerone’s bound is slightly larger in the worst case, near x = y = (3 + √5)/2, but is smaller in general.

The difference between B(x, y) and 1/xy is largest when x or y is small. We can visualize this with the Mathematica command

    Plot3D[Beta[x, y] - 1/(x y), {x, 0.5, 2.5}, {y, 0.5, 2.5}]

which produces the following plot.

The plot dips down in the corner where x and y are near 0.5 and curls upward on the edges where one of the variables is near 0.5 and the other is not.

Let’s look at B(x, y) and 1/xy at along a diagonal slice (3t, 4t).

This suggests that approximating B(x, y) with 1/xy works best when the arguments are either small or large, with the maximum difference being when the arguments are moderate-sized. In the plot we see B(3, 4) is not particularly close to 1/12.

Next lets look at 1/xy – B(x, y) along the same diagonal slice.

This shows that the error bound C(x) C(y) is not too tight, but better than the constant bound except near the maximum of 1/xy – B(x, y).

Related posts

  • Gauss’ constant
  • Beta inequalities with integer parameters
  • Predictive probability for large populations

[1] H. Alzer. Monotonicity properties of the Hurwitz zeta function. Canadian Mathematical Bulletin 48 (2005), 333–339.

[2] P. Cerone. Special functions: approximations and bounds. Applicable Analysis and Discrete Mathematics, 2007, Vol. 1, No. 1, pp. 72–91

The post Upper and lower bounds on the beta function first appeared on John D. Cook.

Previous Post
Next Post

Recent Posts

  • Why a new anti-revenge porn law has free speech experts alarmed 
  • Week in Review: Notorious hacking group tied to the Spanish government
  • Structured frameworks for complex systems
  • Dungeons, Dragons, and Numbers
  • My favorite paper: H = W

Categories

  • Industry News
  • Programming
  • RSS Fetched Articles
  • Uncategorized

Archives

  • May 2025
  • April 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023

Tap into the power of Microservices, MVC Architecture, Cloud, Containers, UML, and Scrum methodologies to bolster your project planning, execution, and application development processes.

Solutions

  • IT Consultation
  • Agile Transformation
  • Software Development
  • DevOps & CI/CD

Regions Covered

  • Montreal
  • New York
  • Paris
  • Mauritius
  • Abidjan
  • Dakar

Subscribe to Newsletter

Join our monthly newsletter subscribers to get the latest news and insights.

© Copyright 2023. All Rights Reserved by Soatdev IT Consulting Inc.