SoatDev IT Consulting
SoatDev IT Consulting
  • About us
  • Expertise
  • Services
  • How it works
  • Contact Us
  • News
  • June 28, 2023
  • Rss Fetcher

When I worked at MD Anderson Cancer Center, we spent a lot of compute cycles evaluating the function g(a, b, c, d), defined as the probability that a sample from a beta(a, b) random variable is larger than a sample from a beta(c, d) random variable. This function was often in the inner loop of simulations that ran for hours or even days.

I developed ways to evaluate this function more efficiently because it was a bottleneck. Along the way I found a new symmetry. W. R. Thompson had studied what I call the function g back in 1933 and reported two symmetries:

g(a, b, c, d) = 1 − g(c, d, a, b)

and

g(a, b, c, d) = g(d, c, b, a).

I found that

g(a, b, c, d) = g(d, b, c, a)

as well. See a proof here.

You can conclude from these rules that

  1. g(a, b, c, d) = g(d, c, b, a) = g(d, b, c, a) = g(a, c, b, d)
  2. g(a, b, c, d) = 1 − g(c, d, a, b)

I was just looking at a book that mentioned the symmetries of the cross ratio which I will denote

r(a, b, c, d) = (a − c)(b − d) / (b − c)(a −d).

Here is Theorem 4.2 from [1] written in my notation.

Let a, b, c, d be four points on a projective line with cross ratio r(a, b, c, d) = λ. Then we have

    1. r(a, b, c, d) = r(b, a, d, c) = r(c, d, a, b) = r(d, c, b, a).
    2. r(a, b, d, c) = 1/λ
    3. r(a, c, b, d) = 1 − λ
    4. the values for the remaining permutations are consequences of these three basic rules.

This looks awfully familiar. Rules 1 and 3 for cross ratios correspond to rules 1 and 2 for beta inequalities, though not in the same order. Both g and r are invariant under reversing their arguments, but are otherwise invariant under different permutations of the arguments.

Both g and r take on 6 distinct values, taking on each 4 times. I feel like there is some deeper connection here but I can’t see it. Maybe I’ll come back to this later when I have the time to explore it. If you see something, please leave a comment.

There is no rule for beta inequalities analogous to rule 2 for cross ratios, at least not that I know of. I don’t know of any connection between g(a, b, c, d) and g(a, b, d, c).

[1] Jürgen Richter-Gebert. Perspectives on Projective Geometry: A Guided Tour Through Real and Complex Geometry. Springer 2011.

 

 

The post Beta inequalities and cross ratios first appeared on John D. Cook.

Previous Post
Next Post

Recent Posts

  • Lawyers could face ‘severe’ penalties for fake AI-generated citations, UK court warns
  • At the Bitcoin Conference, the Republicans were for sale
  • Week in Review: Why Anthropic cut access to Windsurf
  • Will Musk vs. Trump affect xAI’s $5 billion debt deal?
  • Superblocks CEO: How to find a unicorn idea by studying AI system prompts

Categories

  • Industry News
  • Programming
  • RSS Fetched Articles
  • Uncategorized

Archives

  • June 2025
  • May 2025
  • April 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023

Tap into the power of Microservices, MVC Architecture, Cloud, Containers, UML, and Scrum methodologies to bolster your project planning, execution, and application development processes.

Solutions

  • IT Consultation
  • Agile Transformation
  • Software Development
  • DevOps & CI/CD

Regions Covered

  • Montreal
  • New York
  • Paris
  • Mauritius
  • Abidjan
  • Dakar

Subscribe to Newsletter

Join our monthly newsletter subscribers to get the latest news and insights.

© Copyright 2023. All Rights Reserved by Soatdev IT Consulting Inc.