SoatDev IT Consulting
SoatDev IT Consulting
  • About us
  • Expertise
  • Services
  • How it works
  • Contact Us
  • News
  • July 20, 2025
  • Rss Fetcher

When I was a child, I heard an advertisement for a bank that compounded the interest on your savings account with every heartbeat. I thought that was an odd thing to say and wondered what it meant. If you have a rapid heart rate, does your money compound more frequently?

I figured there was probably some fine print, such as saying interest was compounded once a second or something like that. Beyond some frequency it doesn’t matter that much how often interest is compounded, and that’s essentially what continuously compounded interest is: interest compounded so often that it doesn’t matter how often it is compounded [1].

So how often do you need to compound interest before the difference between discretely compounded interest and continuously compounded interest doesn’t matter? Well, that depends on what you think matters. The more demanding you are about what matters, the finer the discrete compounding needs to be. It also matters what the interest rate is. The following Python function gives the difference between continuous compounding and compounding n times per year, at a percentage rate r and with principle P.

    def f(P, n, r) : return P*(exp(r) - (1 + r/n)**n)

Let’s first say that the frequency of compounding matters if it makes a difference of more than $1 on a loan of $1,000,000 over a year. The difference between continuous interest and compounding daily at 6% is $5.24. If we increase the frequency of compounding to hourly, the difference is $0.22, which we are saying does not matter.

When the interest rate goes up, the difference between continuous and discrete compounding also goes up. If we triple the interest rate to 18%, now the difference is $2.21, but if we go to compounding every minute, the difference is $0.04.

Now if we’re more demanding, and we want the difference in interest to be less than a cent on a principle of one million dollars, we need to compound even more often. In that case compounding once a second is enough, given an interest rate of 18%, which means that’s frequent enough for any lower interest rate.

Related posts

  • Three rules of thumb
  • Another rule of 72
  • Persian interest approximation

[1] You could make this statement rigorous by saying for every definition of what matters, i.e. for every tolerance ε, there exists an N such that for all n > N the difference between continuous compounding and compounding with n periods is less than ε.

The post Interest compounding with every heartbeat first appeared on John D. Cook.

Previous Post
Next Post

Recent Posts

  • Check Point Appoints Jonathan Zanger as Chief Technology Officer
  • Microsoft SharePoint servers are under attack because of a major security flaw
  • UK wants to weasel out of demand for Apple encryption back door
  • NETSCOUT Expands Automated Threat Detection & Response Capabilities
  • Hyperinflation changes everything

Categories

  • Industry News
  • Programming
  • RSS Fetched Articles
  • Uncategorized

Archives

  • July 2025
  • June 2025
  • May 2025
  • April 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023

Tap into the power of Microservices, MVC Architecture, Cloud, Containers, UML, and Scrum methodologies to bolster your project planning, execution, and application development processes.

Solutions

  • IT Consultation
  • Agile Transformation
  • Software Development
  • DevOps & CI/CD

Regions Covered

  • Montreal
  • New York
  • Paris
  • Mauritius
  • Abidjan
  • Dakar

Subscribe to Newsletter

Join our monthly newsletter subscribers to get the latest news and insights.

© Copyright 2023. All Rights Reserved by Soatdev IT Consulting Inc.