SoatDev IT Consulting
SoatDev IT Consulting
  • About us
  • Expertise
  • Services
  • How it works
  • Contact Us
  • News
  • January 23, 2025
  • Rss Fetcher

Rounding numbers has a surprising amount of detail. It may seem trivial but, as with most things, there is a lot more to consider than is immediately obvious. I expect there have been hundreds if not thousands of pages devoted to rounding in IEEE journals.

An example of the complexity of rounding is what William Kahan called The Tablemaker’s Dilemma: there is no way in general to know in advance how accurately you’ll need to compute a number in order to round it correctly.

Rounding can be subtle in any number system, but there is an alternative number system in which it is a little simpler than in base 10. It’s base 3, but with a twist. Instead of using 0, 1, and 2 as “digits”, we use −1, 0, and 1. This is known as the balanced ternary system: ternary because of base 3, and balanced because the digits are symmetrical about 0.

We need a symbol for −1. A common and convenient choice is to use T. Think of moving the minus sign from in front of a 1 to on top of it. Now we could denote the number of hours in a day as 10T0 because

1 times 3^3 + 0 times 3^2 + (-1)times 3 + 0 = 24

A more formal way of a describing balanced ternary representation of a number x is a set of coefficients tk such that

x = sum_{k=-infty}^infty t_k 3^k

with the restriction that each tk is in the set {−1, 0, 1}.

Balanced ternary representation has many interesting properties. For example, positive and negative numbers can all be represented without a minus sign. See, for example, Brain Hayes’ excellent article Third Base. The property we’re interested in here is that to round a balanced ternary number to the nearest integer, you simply lop off the fractional part. Rounding is the same as truncation. To see this, note that the largest possible fractional part is a sequence of all 1s, which represents ½:

frac{1}{3} + frac{1}{3^2} + frac{1}{3^3} + cdots = frac{1}{2}

Similarly, the most negative possible fractional part is a sequence of all Ts, which represents −½. So unless the fractional part is exactly equal to ½, truncating the fractional part rounds to the nearest integer. If the fractional part is exactly ½ then there is no nearest integer but two integers that are equally near.

Related posts

  • Floating point: Everything old is new again
  • The hardest logarithm to compute
  • Math’s base 32 vs Linux’s base 32
  • The base with the largest decibel

The post A magical land where rounding equals truncation first appeared on John D. Cook.

Previous Post
Next Post

Recent Posts

  • Deel wants Rippling to hand over any agreements involving paying the alleged spy
  • Telecommunications & IT Companies Form the Next Frontier for Growth & Cyber Crime across Africa
  • Bolt Launches Flight Tracking for Seamless Airport Pick-Ups
  • Uber eyes B2B logistics push in India through state-backed open commerce network
  • VUZ gets $12M to scale immersive video experiences across emerging markets and the U.S.

Categories

  • Industry News
  • Programming
  • RSS Fetched Articles
  • Uncategorized

Archives

  • May 2025
  • April 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023

Tap into the power of Microservices, MVC Architecture, Cloud, Containers, UML, and Scrum methodologies to bolster your project planning, execution, and application development processes.

Solutions

  • IT Consultation
  • Agile Transformation
  • Software Development
  • DevOps & CI/CD

Regions Covered

  • Montreal
  • New York
  • Paris
  • Mauritius
  • Abidjan
  • Dakar

Subscribe to Newsletter

Join our monthly newsletter subscribers to get the latest news and insights.

© Copyright 2023. All Rights Reserved by Soatdev IT Consulting Inc.