SoatDev IT Consulting
SoatDev IT Consulting
  • About us
  • Expertise
  • Services
  • How it works
  • Contact Us
  • News
  • September 14, 2024
  • Rss Fetcher

Edward John Routh (1831–1907) came up with a mnemonic for summarizing many formulas for moment of inertia of a solid rotating about an axis through its center of mass.

Routh’s mnemonic is

I = MS / k

where M is the mass of an object, S is the sum of the squares of the semi-axes, and k is 3, 4, or 5 depending on whether the object is rectangular, elliptical, or ellipsoidal respectively.

This post will show how a variety of formulas fit into Routh’s framework.

Rectangular solids

Suppose we have a box whose base is a rectangle of with sides of length a and b, and we’re rotating the box about the vertical axis through the center of mass. The moment of inertia is

I = M(a² + b²) / 12.

The semi-axes have length a/2 and b/2 and so the formula above fits into Routh’s mnemonic with k = 3:

I = M( (a/2)² + (b/2)² ) / 3.

Why did Routh state his theorem in terms of semi-axes rather than axes? Because circles and spheres are typically described in terms of radius, and ellipses are described in terms of semi-axes.

Cylinders

The moment of inertia for a (circular) cylinder about its center is

I = Mr² /2.

From Routh’s perspective, there are two perpendicular axes to the central axis, both of length r. So his mnemonic could calculate the moment of inertia as

I = M(r² + r²)/4

using k = 4.

For an elliptical cylinder, where the ellipse has semi-major axis a and semi-minor axis b, the moment of inertia is

I = M(a² + b²)/4

which reduces to the circular cylinder result when a = b = r.

Spheres and ellipsoids

The moment of inertia of a sphere about a line through its center is

I = 2Mr² / 5.

Again there are two perpendiculars to the line, both of length r, and so we get the result above using Roth’s mnemonic with k = 5.

For an ellipsoid with semi-axes a, b, and c, rotated about the axis corresponding to c, the moment of inertia is

I = M(a² + b²)/5.

Thin rod

The moment of inertia for a thin rod of length L rotated about its center is

I = ML²/3.

This can be derived from the case of a rectangular solid with length L and negligible width.

Note that the formula for moment of inertia of a cylinder does not apply because we are rotating the rod about its middle, not along the axis running the length of the rod.

Routh’s stretch rule

Moving a point mass in a direction parallel to the axis of rotation doesn’t change its moment of inertia. The continuous version of this observation means that we can stretch the shapes without changing their inertia if we stretch them in the direction of the axis of rotation. This means the rules above apply to more general shapes.

Related posts

  • Basic equations of beam deflection
  • Moments: raw, central, and standardized

Note the that this post refers to physical moments and the link above refers to statistical moments. They’re closely related.

The post Moments of inertia mnemonic first appeared on John D. Cook.

Previous Post
Next Post

Recent Posts

  • Week in Review: Why Anthropic cut access to Windsurf
  • Will Musk vs. Trump affect xAI’s $5 billion debt deal?
  • Superblocks CEO: How to find a unicorn idea by studying AI system prompts
  • Sage Unveils AI Trust Label to Empower SMB’s
  • How African Startups Are Attracting Global Fintech Funding

Categories

  • Industry News
  • Programming
  • RSS Fetched Articles
  • Uncategorized

Archives

  • June 2025
  • May 2025
  • April 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023

Tap into the power of Microservices, MVC Architecture, Cloud, Containers, UML, and Scrum methodologies to bolster your project planning, execution, and application development processes.

Solutions

  • IT Consultation
  • Agile Transformation
  • Software Development
  • DevOps & CI/CD

Regions Covered

  • Montreal
  • New York
  • Paris
  • Mauritius
  • Abidjan
  • Dakar

Subscribe to Newsletter

Join our monthly newsletter subscribers to get the latest news and insights.

© Copyright 2023. All Rights Reserved by Soatdev IT Consulting Inc.