SoatDev IT Consulting
SoatDev IT Consulting
  • About us
  • Expertise
  • Services
  • How it works
  • Contact Us
  • News
  • February 24, 2024
  • Rss Fetcher

The previous post looked at an efficient way to approximate nth roots of fractions near 1 by hand. This post does the same for logarithms.

As before, we assume x = p/q and define

s = p + q
d = p − q

Because we’re interested in values of x near 1, d is small, and small numbers are convenient to work with by hand.

In [1] Kellogg gives the approximation

log x ≈ 3(x² − 1)/((x+ 1)² + 2x) = 6ds/(3s² − d²)

So, for example, suppose we wanted to take the natural log of 7/8. then p = 7, q = 8, s = 15, and d = −1.

log x ≈ (6×15×(−1))/(3×225 − 1) = − 90/674 = − 45/337.

This approximation is good to six decimal places.

Kellogg claims that

This value of E [the natural logarithm], if q [what I’ve called x] be between .9 and 1.1, is true to the seventh decimal.

He then goes on to explain how to create an even more accurate approximation, and how to deal with larger values of x.

Here’s a plot verifying Kellogg’s claim.

Note the that scale of the plot is 10−8. As the flat spot in the middle suggests, you get even more decimal places for x closer to 1.

[1] Ansel N. Kellogg. Empirical formulæ; for Approximate Computation. The American Mathematical Monthly. February 1987, Vol. 4 No. 2, pp. 39–49.

 

The post A very accurate logarithm approximation first appeared on John D. Cook.

Previous Post
Next Post

Recent Posts

  • Heybike’s Alpha step-through e-bike is an affordable, all-terrain dreamboat
  • U.S. lawmakers have concerns about Apple-Alibaba deal
  • Microsoft’s Satya Nadella is choosing chatbots over podcasts
  • MIT disavows doctoral student paper on AI’s productivity benefits
  • Laser-powered fusion experiment more than doubles its power output

Categories

  • Industry News
  • Programming
  • RSS Fetched Articles
  • Uncategorized

Archives

  • May 2025
  • April 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023

Tap into the power of Microservices, MVC Architecture, Cloud, Containers, UML, and Scrum methodologies to bolster your project planning, execution, and application development processes.

Solutions

  • IT Consultation
  • Agile Transformation
  • Software Development
  • DevOps & CI/CD

Regions Covered

  • Montreal
  • New York
  • Paris
  • Mauritius
  • Abidjan
  • Dakar

Subscribe to Newsletter

Join our monthly newsletter subscribers to get the latest news and insights.

© Copyright 2023. All Rights Reserved by Soatdev IT Consulting Inc.